Cre1, the carbon catabolite repressor protein from Trichoderma reesei.
نویسندگان
چکیده
In order to investigate the mechanism of carbon catabolite repression in the industrially important fungus Trichoderma reesei, degenerated PCR-primers were designed to amplify a 0.7-bp fragment of the cre1 gene, which was used to clone the entire gene. It encodes a 402-amino acid protein with a calculated M(r) of 43.6 kDa. Its aa-sequence shows 55.6% and 54.7% overall similarity to the corresponding genes of Aspergillus nidulans and A. niger, respectively. Similarity was restricted to the aa-region containing the C2H2 zinc finger and several aa-regions rich in proline and basic amino acids, which may be involved in the interaction with other proteins. Another aa-region rich in the SPXX-motif that has been considered analogous to a region of yeast RGR1p, was instead identified as a domain occurring in several eucaryotic transcription factors. The presence of the cre1 translation product was demonstrated with polyclonal antibodies against Cre1, which identified a protein of 43 (+/- 2) kDa in cell-free extracts from T. reesei. A Cre1 protein fragment from the two zinc fingers to the region similar to the aa-sequence of eucaryotic transcription factors, was expressed in Escherichia coli as a fusion protein with glutathione S-transferase. EMSA and in vitro footprinting revealed binding of the fusion protein to the sequence 5'-GCGGAG-3', which matches well with the A. nidulans consensus sequence for CreA binding (5'-SYGGRG-3'). Cell-free extracts of T. reesei formed different complexes with DNA-fragments carrying this binding sites, and the presence of Cre1 and additional proteins in these complexes was demonstrated. We conclude that T. reesei Cre1 is the functional homologue of Aspergillus CreA and that it binds to its target sequence probably as a protein complex.
منابع مشابه
A truncated form of the Carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei
BACKGROUND Rut-C30 is a cellulase-hyperproducing Trichoderma reesei strain and, consequently, became the ancestor of most industry strains used in the production of plant cell wall-degrading enzymes, in particular cellulases. Due to three rounds of undirected mutagenesis its genetic background differs from the wild-type QM6a in many ways, of which two are the lack of a 83 kb large sequence in s...
متن کاملNucleo-cytoplasmic shuttling dynamics of the transcriptional regulators XYR1 and CRE1 under conditions of cellulase and xylanase gene expression in Trichoderma reesei
Trichoderma reesei is a model for investigating the regulation of (hemi-)cellulase gene expression. Cellulases are formed adaptively, and the transcriptional activator XYR1 and the carbon catabolite repressor CRE1 are main regulators of their expression. We quantified the nucleo-cytoplasmic shuttling dynamics of GFP-fusion proteins of both transcription factors under cellulase and xylanase indu...
متن کاملThe Relation Between Promoter Chromatin Status, Xyr1 and Cellulase Ex-pression in Trichoderma reesei
The ascomycete Trichoderma reesei is used for the production of plant cell wall-degrading enzymes in industrial scale. The interplay of the transactivator Xyr1 and the repressor Cre1 mainly regulates the expression of these enzymes. During induc-ing conditions, such as in the presence of sophorose, the transcription of the two major cellulase-encoding genes, cbh1 and cbh2, is activated as well ...
متن کاملPhosphorylation positively regulates DNA binding of the carbon catabolite repressor Cre1 of Hypocrea jecorina (Trichoderma reesei).
Cre1 of the ascomycete Hypocrea jecorina is a Cys(2)His(2) zinc finger DNA-binding protein functioning as regulator for carbon catabolite repression. It represents the functional equivalent of yeast Mig1, known to be negatively regulated by the Snf1-kinase at the nuclear import level. We demonstrate that Cre1 is also a phosphoprotein, and identify Ser(241) within an acidic protein region as pho...
متن کاملTrichoderma reesei CRE1-mediated Carbon Catabolite Repression in Re-sponse to Sophorose Through RNA Sequencing Analysis
Carbon catabolite repression (CCR) mediated by CRE1 in Trichoderma reesei emerged as a mechanism by which the fungus could adapt to new environments. In the presence of readily available carbon sources such as glucose, the fungus activates this mechanism and inhibits the production of cellulolytic complex enzymes to avoid unnecessary energy expenditure. CCR has been well described for the growt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEBS letters
دوره 376 1-2 شماره
صفحات -
تاریخ انتشار 1995